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NUMERICAL TECHNIQUES FOR MULTI-SCALE DYNAMICAL
SYSTEMS WITH STOCHASTIC EFFECTS∗

ERIC VANDEN-EIJNDEN†

Abstract. Numerical schemes are presented for dynamical systems with multiple time-scales.
Two classes of methods are discussed, depending on the time interval on which the evolution of the
slow variables in the system is sought. On rather short time intervals, the slow variables satisfy
ordinary differential equations. On longer time intervals, however, fluctuations become important,
and stochastic differential equations are obtained. In both cases, the numerical methods compute the
evolution of the slow variables without having to derive explicitly the effective equations beforehand;
rather, the coefficients entering these equations are obtained on the fly using short simulations of
appropriate auxiliary systems.

1. Introduction
Systems evolving on widely separated time-scales represent a challenge for nu-

merical simulations. A generic example is




Ẋε
t = f(Xε

t , Y ε
t , ε), Xε

t=0 = x

Ẏ ε
t =

1
ε
g(Xε

t , Y ε
t , ε), Y ε

t=0 = y,
(1.1)

where f and g are of order one, ε is a small parameter measuring the separation of
time-scale in the system, and we have assumed that the phase-space can be decom-
posed into slow degrees of freedom, x, and fast ones, y. Systems of this type arise, e.g.,
in molecular dynamics, material sciences, atmosphere-ocean sciences, etc. Standard
computational schemes fail due to the wide separation between the O(ε) time-scale
one must compute with, and the O(1), or even O(ε−1), time-scales one is typically
interested in analyzing the solutions.

On analytical grounds, the following is known about (1.1) (see, e.g., [1, 7] and
references therein). If the dynamics for Y ε

t alone at Xε
t = x fixed has an invariant

measure, µε
x(dy), and in addition

lim
ε→0

∫
f(x, y, ε)µε

x(dy) = B(x), (1.2)

then in the limit as ε → 0, Xε
t converges to the solution of the following equation:

Ẋt = B(Xt), Xt=0 = x. (1.3)

This effective equation is valid on bounded time-intervals, t ∈ [0, T ) with T ≤ ∞;
however, this equation becomes invalid if the evolution of Xε

t is sought on very large
time intervals, of the order of ε−1. In particular, it is always inappropriate if

∫
f(x, y, ε)µε

x(dy) = O(ε), (1.4)
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since in these situations the evolution of Xt arises only on the ε−1-time-scale. Over
such long time intervals, fluctuations become important, and the effective equation
for Xε

t in the limit of small ε on the rescaled time s = tε is a stochastic differential
equation,

dXs = b(Xs)ds + σ(Xs)dWs, Xs=0 = x, (1.5)

whose coefficients b and σ are expressed in terms of limits of expectations similar to
(1.2) – see below.

(1.3) or (1.5) can be used directly to simulate the evolution of Xε
t , provided one

is able to compute analytically the coefficients B(x), b(x), and σ(x) entering these
equations. It might be the case, however, that this cannot be done because the
dynamics of the fast variables Y ε

t are too complicated. One way to proceed then is
to make some suitable approximations on (1.1) to simplify the dynamics of Y ε

t so as
to make possible the calculation of B(x), b(x), and σ(x) (see, e.g., [6] for application
of this philosophy to problems arising in atmosphere-ocean science). Another way,
which is what this paper is about, is to estimate B(x), b(x), and σ(x) numerically,
via simulation of the equation for Y ε

t (or some auxiliary variables, suitably defined)
at Xε

t = x fixed on the rescaled time-scale τ = t/ε. For small ε, such numerical
schemes are advantageous since Y ε

t reaches equilibrium on a interval of time which is
smaller than the time-step used to evolve Xt; therefore, the simulation of Y ε

t is only
necessary on a small portion of the time interval one wishes to evolve Xt. Note that a
similar philosophy is applied in [3, 4, 5] for the deterministic situations on short time
intervals; to the best of our knowledge, no schemes of this type have been proposed
for the stochastic situations on longer time intervals.

2. Short time intervals
Consider





Ẋε
t = f(Xε

t , Y ε
t , ε), Xε

t=0 = x

Ẏ ε
t =

1
ε
g(Xε

t , Y ε
t , t/ε, ε), Y ε

t=0 = y,
(2.1)

where (x, y) ∈ Rn × Rm, and f is a differentiable function. Assume that for each
x ∈ Rn,

Żε
τ = g(x,Zε

τ , τ, ε), (2.2)

generates a stationary (ergodic) Markov process with invariant measure µε
x(dy). (The

statement below is rigorous in this case, but one has also in mind situations where
the Markovianity, or even the randomness, of Zτ is only approximated, for instance
if (2.2) displays deterministic chaos with short memory effects.) Assume in addition
that (1.2) holds. Then, for t ∈ [0, T ], with 0 ≤ T < ∞, τ ∈ [0, T ′], with 0 ≤ T ′ < ∞,
and for any test function ϕ, one has

∣∣Eϕ(Xε
t , Y ε

t+ετ )−Eϕ(X̄ε
t , Zε

τ )
∣∣ → 0, (2.3)

as ε → 0. Here X̄ε
t satisfies the ordinary differential equation:

˙̄Xε
t = B(X̄ε

t , ε), X̄ε
t=0 = x, (2.4)

where

B(x, ε) =
∫

f(x, y, ε)µε
x(dy); (2.5)
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Zε
τ satisfies (2.2) with x = X̄ε

t fixed and initial condition Zε
τ=0 distributed according

to µε
x=X̄ε

t
(dy). This result is a generalization of the one stated in the introduction –

the common limit of Xε
t and X̄ε

t satisfies (1.3) – and it can be proven by analyzing
the backward equation associated with (2.1); see [7] and references therein for details.

A class of numerical schemes can be devised in which one integrates (2.2) and
(2.4) to approximate the solution of (2.1). These schemes involve three subroutines
whose algorithms need to be decided beforehand and are organized as follows (we use
here the terminology proposed in [3]):

1. A macro-solver for (2.4) will give us the desired evolution of the slow variables
X̄ε

t ≈ Xε
t on the O(1)-time-scale. The macro-solver can be explicit or implicit, with

different order of accuracy, etc; it requires to estimate B(X̄ε
t ) at the given value of

X̄ε
t . Each time this is necessary, one uses:

2. A micro-solver for (2.2), which can be different from the macro-solver, and will
give us evolution of the fast variables Zε

τ ≈ Y ε
t+ετ on the O(ε)-time-scale; and:

3. An estimator to evaluate the expectation in (2.5) and obtain the desired estimate
of B(X̄ε

t ). The estimator can use, e.g., different replica of (2.2) and evaluate (2.5)
through average over this ensemble, or resort to ergodicity and replace the averages
in (2.5) by time-averages.

The overall efficiency and accuracy of the schemes will vary depending on which
methods one uses in the three subroutines. However, since the philosophy remains
the same no matter what methods one chooses, we will here illustrate the technique
using simple schemes; forward Euler for both the macro- and the micro-solvers, and
the simplest time-averaging as estimator. The macro-solver then reads

X̂ε
n+1 = X̂ε

n + B̂(X̂ε
n, ε)∆t, X̂ε

n=0 = x, (2.6)

where X̂ε
n is the numerical approximation of X̄ε

n∆t, ∆t is the macro-time-step, and
B̂(x, t, ε) denotes the approximate value of B̂(x, t, ε) which needs to be estimated at
each macro-time-step. This is done by considering (2.2) with x = X̂ε

n, which if we pick
the forward Euler scheme with micro-time-step ∆τ as micro-solver can be expressed
as

Ẑε
n,m+1 = Ẑε

n,m + g(Ẑε
n,m, m∆τ, ε)∆τ. (2.7)

Since one is primarily interested in the invariant measure associated with this process,
the initial condition only affects the rate of convergence to equilibrium; one may for
instance take Ẑε

0,0 = 0 initially, then take the value reached by Ẑε at the previous
macro-time-step, i.e. Ẑε

n,0 = Ẑε
n−1,M−1, where M is the total number of steps used

in the micro-solver. Finally, evaluating the expectation in (2.5) via time-averaging
amounts to using as estimator

B̂(X̂ε
n, ε) =

1
M

M−1∑
m=0

f(X̂ε
n, Ẑε

n,m, ε). (2.8)

(2.8) is the most elementary procedure to evaluate time-averages; it can be improved
e.g. by using proper filters which put less weight on the first steps in the micro-solver,
which may significantly speed up convergence with M [2]. Note that M must be large
enough so that the average in (2.8) is accurate, but it is O(1) in ε, since it depends
on the correlation time τc of Zε

τ .
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The efficiency of the method can be assessed as follows. Since in most applications,
the size of the phase-space associated with the fast y ∈ Rn variables will be much
bigger than the one of the slow x ∈ Rm variables, i.e. n À m, it is natural to compare
the number of evaluations of the functions g if (i) ones solves (2.1) by forward Euler,
or (ii) one uses (2.6)–(2.8) – in this case, one also needs to compute (2.8), which
requires mM function evaluations; we assume that the associated cost is negligible.
Since (2.1) must be solved using a micro-time-step δt = ε∆τ , advancing by one macro-
time-step ∆t requires R = b∆t/ε∆τc = O(ε−1) micro-time-steps; hence, the number
of evaluations of g is mR. On the other hand, the number of evaluations of g simply
is mM using the scheme based on (2.7). Therefore, as soon as M < R = O(ε−1), it
becomes advantageous to use the new scheme instead of integrating (2.1) directly.

A more delicate question is the accuracy of the method. It appears that the
main difficulty is to estimate how well and how fast the scheme approximate, the
invariant measure µε

x(dz). We will leave a detailed analysis of this question to a
future publication.

3. Long time intervals
Consider now situations where the evolution of Xε

t in (2.1) is sought on longer
time intervals of the order of O(ε−1). Using the rescaled time s = εt, (2.1) becomes





Ẋε
s =

1
ε
f(Xε

s , Y ε
s , ε), Xε

s=0 = x

Ẏ ε
s =

1
ε2

g(Xε
s , Y ε

s , s/ε2, ε), Y ε
s=0 = y.

(3.1)

We shall make two additional assumptions, which are unnecessary but simplify the
discussion. First we assume that g can be decomposed as

g(x, y, τ, ε) = g1(y, τ) + εg2(x, y, τ, ε), (3.2)

where the leading part, g1, is differentiable in y and does not depend on x. Second,
we assume that

∫

Rn

f(x, y, ε)µε
x(dy) = O(ε), (3.3)

where µε
x(dy) is the invariant measure of the process defined in (2.2); (3.3) guaran-

tees that (3.1) is on the right time-scale on which the dynamics for Xε
s arises – the

procedure below can be generalized to situations where the integral in (3.3) is O(1),
in which case Xε

t displays nontrivial dynamics on the O(1)-time-scale, as discussed in
the previous section; these results will be presented elsewhere.

The system in (3.1) is more challenging to handle numerically since the coefficients
entering the effective equations for Xε

s are expressed in terms of expectations like (3.3),
to be computed in the limit of small ε. This is nontrivial. Suppose that, relying on
ergodicity, one tries to estimate (3.3) via time-averaging

∫

Rn

f(x, y, ε)µε
x(dy) ≈ 1

T

∫ T

0

f(x, Y ε
ε2τ , ε)dτ, (3.4)

where Y ε
ε2τ is computed from (3.1) at Xε

t = x fixed. The error square one makes in
such a computation is

error2 = var(f)
τc

T
,



ERIC VANDEN-EIJNDEN 389

where τc is the correlation time of Y ε
ε2τ ; both τc and var(f) are typically O(1) in ε,

whereas from (3.3), the expectation of f(x, y, ε) is O(ε). Therefore, the averaging time
T necessary to achieve accuracy diverges as ε−2, i.e. expectations like (3.3) cannot be
estimated directly as in (3.4) using a time interval to evolve Y ε

t , which is smaller than
the time step used to evolve Xε

t . Similar difficulties arise also with other procedures
than time-averaging – for instance, using different realizations.

The basic idea to compute with accuracy the expectation in (3.3) is to enlarge
the system in (3.1). Let Ys satisfy

Ẏs =
1
ε2

g1(Ys, s/ε2), Ys=0 = y.

(no superscript ε here, since this dependency is eliminated by rescaling time as τ =
s/ε2), and define

Ỹ ε
s =

1
ε

(Y ε
s − Ys) . (3.5)

In terms of (Xε
s , Ys, Ỹ

ε
s ), (3.1) becomes





Ẋε
s =

1
ε
f(Xε

s , Ys, 0) + F (Xε
t , Ys, Ỹ

ε
s , ε), Xε

t=0 = x,

Ẏs =
1
ε2

g1(Ys, s/ε2), Ys=0 = y,

˙̃Y ε
s =

1
ε2

(
G1(Ys, Ỹ

ε
s , s/ε2, ε) + g2(Xε

s , Ys + εỸ ε
s , s/ε2, ε)

)
, Ỹ ε

s=0 = 0.

(3.6)

Here




F (x, z, u, ε) =
∫ 1

0

((u,∇z)f(x, z + εθu, εθ) + fε(x, z + εθu, εθ)) dθ,

G1(z, u, τ, ε) =
∫ 1

0

(u,∇z)g1(z + εθu, τ)dθ,

(3.7)

where fε(x, y, ε) = (∂f/∂ε)(x, y, ε). Furthermore, (3.4) can now be estimated from
∫

Rn

f(x, y, ε)µε
x(dy) ≈ ε

T

∫ T

0

F (x, Yε2τ , Ỹ ε
ε2τ , ε)dτ, (3.8)

with equality in the limit as T →∞; the term involving f(Xε
s , Ys, 0) is absent since,

in order to satisfy (3.3), one must have
∫
Rn f(x, y, 0)µ(dy) = 0 (no ε here!), where

µ(dy) is the invariant measure of Ys. Because the right hand side in (3.8) is explicitly
proportional to ε, the accuracy problem one had with (3.4) disappears.

We are now ready to state the main result which we will use to devise a numerical
procedure to integrate (3.1) or, equivalently, (3.6). Consider





U̇τ = g1(Uτ , τ),

V̇ ε
τ = G1(Uτ , V ε

τ , τ, ε) + g2(x,Uτ + εV ε
τ , ε),

(3.9)

and denote by µε
x(du, dv) the invariant measure of the joint process (Uτ , V ε

τ ) defined
by (3.9), and by µ(du) the one of Uτ alone. Then, for s ∈ [0, T ], with 0 ≤ T < ∞,
τ ∈ [0, T ′], with 0 ≤ T ′ < ∞, and any test function ϕ, one has

|Eϕ(Xε
s , Y 1,ε

s+ε2τ , Y 2,ε
s+ε2τ )−Eϕ(X̄ε

s , Uτ , V ε
τ )| → 0, (3.10)
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as ε → 0, where X̄ε
s satisfies the stochastic differential equation:

dX̄ε
s = b(X̄ε

s , ε)ds + σ(X̄ε
s , ε)dWs, X̄ε

s=0 = x. (3.11)

Here Ws is m-dimensional Wiener process; b(x, ε) = b1(x, ε) + b2(x, ε), with




b1(x, ε) =
∫

Rn×Rn

F (x, u, v, ε)µε
x(du, dv),

b2(x, ε) =
∫ ∞

0

∫

Rn

divxf(x, u, ε)Euf(x,Uτ , ε)µ(du)dτ,

(3.12)

where Eu denotes the expectation over the statistics of the process Uτ starting at
Uτ=0 = u; σ(x, ε) is a Rm × Rm matrix satisfying

σ(x, ε)σT (x, ε) = a(x, ε), (3.13)

where

a(x, ε) = 2
∫ ∞

0

∫

Rn

f(x, u, ε)⊗Euf(x,Uτ , ε)µ(du)dτ. (3.14)

Finally, in (3.10), (Uτ , V ε
τ ) satisfies (3.9) at x = X̄ε

s fixed, with initial condition
(Uτ=0, V

ε
τ=0) distributed according to µε

x=X̄ε
s
(du, dv). We will omit the proof of this

result; it involves straightforward generalizations of the techniques in [7].
As in the deterministic case, this result can be used to devise numerical schemes

to approximate the solution of (3.1) by integrating (3.11). The schemes involve again
three subroutines – macro-solver, micro-solver, and estimator – which must be decided
beforehand, and we illustrate the technique using simple choices; forward Euler for
both the macro- and the micro-solvers, and the simplest time-averaging for evaluating
the expectations in (3.12) and (3.14). The macro-solver then reads

X̂ε
n+1 = X̂ε

n + b̂(X̂ε
n, ε)∆s + σ̂(X̂ε

n, ε)∆Wn, (3.15)

where X̂ε
n is the numerical approximation of X̄ε

n∆s, ∆s is the macro-time-step, and
{∆Wn} is a collection of i.i.d. Gaussian variables with zero mean and variance ∆s.
b̂(X̂ε

n, ε) and σ̂(X̂ε
n, ε) denotes the approximated values of b(X̂ε

n, ε) and σ(X̂ε
n, ε), which

we estimated at each macro-time-step by considering (3.9) with x = X̂ε
n:





Ûn,m+1 = Ûn,m + g1(Ûn,m,m∆τ)∆τ,

V̂ ε
n,m+1 = V̂ ε

n,m + G1(Ûn,m, V̂ ε
n,m,m∆τ, ε)∆τ

+g2(X̂ε
n, Ûn,m + εV̂ ε

n,m,m∆τ, ε)∆τ,

(3.16)

with suitable initial conditions (for instance taken similarly as in the deterministic
case). Finally, the estimator to evaluate the expectations in (3.12) and (3.14) via
time-averaging is





b̂1(X̂ε
n, ε) =

1
M

M−1∑
m=0

F (X̂ε
n, Ûn,m, V̂ ε

n,m, ε),

b̂2(X̂ε
n, ε) =

∆τ

M

M−1∑
m=0

M−m−1∑

m′=0

divxf(X̂ε
n, Ûn,m, ε)f(X̂ε

n, Ûn,m+m′ , ε),

â(X̂ε
n, ε) =

2∆τ

M

M−1∑
m=0

M−m−1∑

m′=0

f(X̂ε
n, Ûn,m, ε)⊗ f(X̂ε

n, Ûn,m+m′ , ε).

(3.17)
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(3.17) can again be improved, e.g. by using proper filters as in the deterministic
case, or by using fast Fourier transform techniques, which require M log M operations
instead of M2 for the last two averages in (3.17). Once (3.17) has been evaluated, the
last step is to compute the square root (i.e. Cholesky’s decomposition) of â(X̂ε

n, ε) to
get σ̂(X̂ε

n, ε).
The efficiency of the method can be analyzed as in the deterministic case, by

comparing the number of evaluations of the functions g and h in (3.1), and of g,
G, and h in (3.9) – to that should be added the cost of computing (3.17), which
requires mM + mM2 + 1

2m2M2 function evaluations, and taking the square root
of a(x, ε), which requires 1

6n3 operations; we assume that the cost associated with
both is negligible. (3.1) must be solved using a micro-time-step δs = ε2∆τ , and
R = b∆s/ε2∆τc = O(ε−2) micro-time-steps are required to advance by one macro-
time-step ∆s; hence, the number of evaluations of g and h is 2mR. On the other
hand, the number of evaluations of g, G, and h simply is 3mM using the scheme
based on (3.9). Therefore, as soon as M < 3

2R = O(ε−2), it becomes advantageous
to use the new scheme instead of integrating (3.1) directly. (Note also that this is
the worst case scenario, and it will usually be possible to improve it greatly by taking
advantage of the special symmetries of the problem under consideration – for instance,
if divxf(x, y, ε) = 0, then b2(x, ε) = 0, or if f(x, y, ε) = f(y, ε), then b2(x, ε) = 0 and
a(x, ε) = a(ε) must be computed only once, etc.)
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